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The asymptotic method of multiscale expansions (see [l., 2 J for ordinary diff- 
erential equations is expounded and substantiated. It is shown that the meth- 
ods of multiscale expansions and of averaging [3] yield equivalent results in 
any approximation. The findings about convergence in finite time intervals 
obtained in E4, 51 are generalized. It is shown that the time interval in which 
the error of an expansion remains small substantially depends on the proper- 
ties and stability of the approximate solution. 

The methods of Bogo~ubov and Mitropo~~i are well,su~stantiated in [3 -5 ] 
and the order of closeness between the exact solution and its first [S] and higher [4,5 ] 

approximations is established. Construction of higher approximations is, as a rule,very 
laborious. The method of multiscale expansions based on qualitative concepts of motion 

properties of systems makes it, on the other hand, possible to obtain a higher approx- 
imation without having to resort to cumbersome calculations. Furthermore, it gives a 
clearer picture of the physical essence of motion by separating “quick-acting” and 

“slow” effects that occur in various intervals of time. It was proved on specific ex- 
amples that solutions derived by the method of multiscale expansions and those obtain- 
ed by the method of averaging coincide in every approximation, but this has not been 
proved for the general case and any number of approximations. Below we show that 
solutions obtained by both these methods are completely equivalent, and that the the- 

orems on the existence and convergence of asymptotic expansions that are valid in the 
method of averaging are, also, applicable in the method of multiscale expansions. 

1, Let E bean n-dimensional real space and D’ a bounded region in it. 
We consider the equation in its standard form 

dy I dt = &YO (t, y) + E’Y, (t, y) + . * . + Eh’Y,_, (t, y) -I- ( 1.1) 

&+‘Y, (t, y, E) 0 < t < T, y E D 

Operators Yi (i = 0, . . ., k) are continuous with respect to y and have /,z - i 

derivatives in D with respect to t. and e which are measurable, 
We propose to seek for that equation a solution of the form 

Y = fo (t, “61, %, - * .) + eF, (ft a,, t,, - * * ) + * ’ * + ( 1.2) 

Ek F, (t, z,, 72, . . .) 

where ~l=&t,...,Tm=Emt are slow variables which define motions that 
take place at various velocities. The different rate of change of variables is taken 

into account in the differentation 
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expansion coefficients they are subjected to the 

II J’l /I m,-l, . . . . 
II ‘i II -- 

II ‘i-l II 
1 for o,<t<co, c - 1) (i -= 1, . .) (1.4) 

The fulfilment of that condition ensures the closeness of solution to the generating 
solution in the related time interval [2]. 

The substitution of (1.2) and (1.3) into (1.1) and the equating of coefficients 

at like powers of E yields a system for the successive determination of operators 

fm F,, . . ., F,. 
The zero approximation equation afo / dt :-= 0 implies that fo does 

not explicitly depend on t and is a function of slow variables fo = fo (a,, T,, . . .). 

This function is so far unknown and is to be determined by higher approximation equ- 
ations with allowance for condition (1.4). For F,, . . . F, we have 

OFI 
r)t -- yo (t, fo) - 2 
r?F.> 
: = Y, (t, fo) -t- % F1 - ;;; - gf = Q (t, fo) ot 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

? = Q._l(t, fo) - e 

(1.5) 

afo 
at.,. 

1n--i 

a),, (t, fo) = z Pij - jfJ “FLyi1 
j=O r=l. 

(1.6) 

Operators Pij are determined by the expansions 
Ii-i 

~‘i (t? fo t- &F1 t_. . ' + &kFk) = jzo Pi& + Pi (F) G-i+1 (1.7) 

It follows from the first equation of system (1.5) that for condition (1.4) to 
be satisfied it is necessary to eliminate from the equality 

I?‘, = ( y, (s, fo) as - t 2 
0 

terms that are linear to t by setting 
T 

(1.8) 
_ = ?I;, (fo), (V,, 

<IT’, 
G,(f,) = ;\im+ \ YO(fO~ s) ds =- Po(fo) 

0 

Thus 

F, (6 ~1, . . . ) - ; V-o (fo, 4 - Go (fo)l ds = FI (t, fo(c, . ..I) (1.9) 

By excluding from all subsequent approximations all secular terms we obtain 

af” - = G,(f,), 
or1 

ao(fo) = lim-&- f 
T-32 

Yo (fo, 4 ds = 50 (fo) 
(1.10) 

0 

t 

P; (t, ZI. .) = Ff (I, fo (t1. . . .), r I; [‘Q-l (.% fo) -G-l (fo)l ds 
(1.11) 

0 
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Taking into account that a,, '52, . . . , Tk are dependent variables, we 

write the equations for determining f. as 

cE/, = E al,, , . . . + Ek g- = &a&) + . . . -:- Eh.L-lcl)h. (fo) 
(1.12) 

dl Ull 
k 

Higher terms of expansion are determined by equalities (1.11) in which function fo 

is already known from the solution of Eq. (1.12 ). 
Equation (1.12) and formulas (1.11) determine f. and Fi to within terms 

of order $. The explicit introduction of slow variables discloses the physical es~- 

ence of solution, namely, that Eqs. (1.10 ) define slow processes that are significant 

only in the time intervals t - T / ei-+ I, and that by retaining in expansion (1.2 ) 

li + 1 terms, tie take into account not only the minor but, also, the slow effects 

that appear in the time intervals t - T / E?. 
If f. is taken as the new variable which defines operators Fi by form - 

ulas (1. ll), then, by substituting (1.2) and (1.3) into Eq. (1.1) and taking into acc- 

ount formulas (1.6) and (1.12) we find that f,, satisfies the exact equation 

df,, ( dt = ~5~ (to) + . . . + ~~?i$_, (to) + ch’+‘mh. (t, to) + (I. 13) 
e+lR (t, fo, E) 

where lim R (t, fo, E) = 0 when E + 0. If, however, f. is determined by the 

averaged equation (1.12), we are faced with the error of the expansion whose estimate 
is given below in Sect. 2 , 

Let us show that the principal term of expansion of fo and the higher app- 

roximations expressed as functions of it are exactly the same as the coefficients of as- 
ymptotic expansion obtained by the method of averaging. 

In the method of averaging the solution of Eq. (1.1) is sought in the form of 
expansion [ 3- 5 ] 

Y = 5 + EU1 (t, z) + . . . + Epulc (t, 2T) 
(1.14) 

where the principal term of expansion z is taken as the new variable. Following the 
basic assumptions and reasoning in [5] and substituting (1.14) we pass from (1.1) to 

the autonomous equation 
dx / dt = &X0 (x) -k s2X, (x) + . . . + E~X~_~ (x) + (I. 15) 

ch‘+*ix h’ (t, 29 &> 

accurate to within terms of order $+i, 

Operators Xi (x), andUi+r (t, x:>are successively determined by formulas 

c4,5 1 
xi (x) = ;iIy; + [ 

(1.16) 
Yi (s, x) ds 

0 

where 
ui+l (t, 2) z $ [Yi (~7 x)- Xi(z)] ds 

0 

Y, (t, x) = C QlPij - C Qa-m* (a - 0, . . . ) k) 
(1.17) 

i+j+=a osm<a-1 

Ql=- c ~Q~([~+~~+...+~~~l-‘= .&Qi) ("") 

+-P=I 
i=O 
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Operators l’i j satisfy formulas (1.7 ). Operator x1; (t, X7 8) is determined by 

formula 

& (t, ,z, t.) = Y, (t, II:) -t_ L (t, x, E), lim /, (t, 5, c) = 0 

where L (t, z, &) is the remainder formed by the s&%tution into the input equation 
(1.1) of expansion (1.14) in which .x (t) is determined by the averaged equation 

dX / tdt = FX” (.T) + . . . + F,~~xk_l (x) + ,i,.+q& (x) (1.19) 

and operators Xi and Ui are specified by formulas (1.16 ). The formula for oper- 
ator /, is given in [3-51, 

Comparison of formulas (1.10 ) - (1.13 ) with (1.14) - (1.18 ) shows that sol- 
utions derived by either method are the same. if the quantities (Iji and Yi deter- 

mined, respectively, by formulas (1.6 ) and (1. 17 ) are the same. 
In fact, if z(k+ij and fOUtlj are, respectively, the solutions of Eqs. (1.19) 

and (1.12) and ali = Yi, wit11 (j < i < 112 - 1, then 

i.e. fO(ln) = x,,(ln), and, consequently, 

Fi = Ui, I ~;i&m 
(1.20) 

We apply the method of mathematical induction for i = Owhen a0 =Yv,,=Y,_ 
We shall prove that when 

(1) In-1 = ‘~l?Z-l = 
2: 

QlZ'ij - 
c 

o,n_7_,a+ (1.21) 

iCm,i+lb W-l O<TQi-k--? 

where in accordance with (1.18) and (1.20) 

Let us, first, calculate the second sum in (1. 6 ). 
By virtue of (1.5 ) and (1.21) 
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and, with allowance for (1.22) 

i3F 
;;+r QIPij = .- c QsPij 

(1.24) 

r=l i+j+l=r-l s+i+j=?n 
S>ll 

Because Q. = 1 we can write 
m-i 

c Pij + C QsPij = C QsPij 

j=O s+i+j=Vl s+i+i 
S>1 S>O 

(1.25) 

and exactlv in the same wav , , 

ICC i3F 
(1.26 1 

;;+l 
r=1o<rl<r--2 

Q,._ %+ G] = c Q,,,+ + 

OSQ<m-1 

The substitution of (1.24)- (1.26) into (1.6) shows that (1.6) coincides with (1.23 ). 
This proves that expansions (1.2) and (1.14) are equivalent, i. e. f. = 5 and 

The conditions under which operators Ui or (what is the same) Fi, can be 
successively determined were defined in [3-S]. In particular, if all operators 
Yi (i = 0, s l -3 k) together with derivatives of up to k - i order are bounded 
in D if operators Ui are bounded, and if there exists averaging of operator -q!, , 
condition (P,)), then operators Ui can be successively determined by formulas (1.16). 

2. It follows from the analysis in Sect. 1 that, when determining the k + 1 terms 
of expansion, we retain the quantities that are important in the time interval t - T / Eke’ 

Simultaneously the method of averaging and that of multiscale expansions 
conform to the theorem [3-S] which states that with specific constraints on coefficients 
of the equation for any (finite) T the following inequality is satisfied. 

lim sup max (ewk 11 1c (t) - 3 (t) 11) = 0 (2.1) 
E+o XEM(E, Tkl O<tgT/c 

where M (E, T) is the set of all solutions of Eq. (1.15) determinate in[O, Tl and 
_&fk (E, T) is the set of all asymptotic approximation of the k + 1 order to solution 

2 (t). Of interest is the behavior of solution in the time interval t N T / Ek, 
since it makes sense to retain only those terms that are important within the conver- 
gence range. 

Let us again consider Eq. (1.1) whose solution is sought in the form (1.14). 
The principal term of expansion z satisfies the exact equation 

dX / dt = EXO (5) + E’x, (X) + . . . + Ektixk (t, X, E) (2.2) 

With the use of asymptotic methods it is possible to obtain the approximate solution 

9 = z + aUr (t, 2) + . . . + &‘Uk (t, 2) (2.3) 

in which the principal term of expansion z satisfies the averaged equation 
(2.4) 

dz / dt = &X0 (z) + E2x, (I) + . . . + &k+ixk (2) = EZ (E, 5) 
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(2.4) 

We have to determine the quantity // Y - !7 l]_Foc this we determine11 r --.z 11 
between the solution of the exact equation (2.2) and the averaged equation (2.4). 

Let us, first, assume that Eq. (2.4) has a quasi-static, i. e. independent of 
time, solution .J = %. The equation of perturbed motion for % = 5 can be written 

in the form 

~01 / dt = E I2 (5 + h, F) - Z (E, F)] = F [A (+ + F (e, h)] (2.5) 

Let among the eigenvalues %.,, (A) of matrix A (P) = A O + &A 1 + . . . -+- ~~Ati 

there be at least one lying in the right-hand half-plane, and 

0 < mas He 3Lrl (A) < V, v < ~~a,,, + . . . + E”u, o < tn C 11. 
(2.6) 

It is then possible to use the estimate [6] 

)I e.lt jl \< Ne” 
(2.7) 

We introduce in the analysis the quantity u = (CC - E) / e” substitute the 
new variable T = &t for t . and write the equation for u 

(111 -= 
(1T 

E’%, E) - % (& E)l + 

We rewrite (2.8) after separating the linear with respect to 

as 

(2.8) 

U, pact 

,ju / & z ii (p)u + l;‘etF (E”ZL, e) -.I- v (T/C-. 11, c) (2.9) 

v (T ii e, u, E) y= x,; (7 / ’ t’, g _I_ k&L, F) - *Y/; ([ j- e”‘rr) 

where A (E) and F (E%, E) ace quantities defined in (2.5). 

Theorem 1. Let Eq. (2.4) have a quasi-static solution that satisfies con - 

ditions (2.5 ) - (2.7 ), and let, furthermore, Xi, (T il t‘, t‘, Z) converge as a whole 

to WI, (x), i.e. C61 

(2.10) 

Then 

lirn Sup (2.11) 
E-3 XEM~E, r/s 

t E ;1J, (E, T/&‘,l’l) 

Proof. We rewrite (2.9) in the form of the integral equation IU (7) = 1, 
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and estimate these integrals. 
Because F (e, h) contains h in a higher power than the first, it is possible 

to choose the neighborhood 11 u 11 < p, such that 

E-h)IF(&iU,e)II,<qI)uI), &v/N 

We can then write 

11 (% r, e) < qN 5 eY(f-“) 11 u (o) I( do < v 5 .s~(~F-O) 11 u (o) 11 do 
(2.12) 

0 0 

To estimate the second term we integrate by parts, and obtain 

12 (ZL, t, a) = i 

(2.13) 
eAW(~-‘N &,J (u, (I, E) = J (u, z, E) + 

IJ 

n (E) i e.4W5-~~J (I/,, u, E) da, J (u. it, E) +(+,e)ds 

Because of condition (2.10) lim J (u, o, E) = 0 W&XI E + 0. However, 

according to theorem on limited convergence the transition to limit in (2.13 > is only 
possible in the region where the quantity 11 e*@)@+ 11, is limited a i. e. when 

O<r< T/V (=[71. Then (2.14) 
12 (u, ‘6, a) < rl (a) 

and lim q (E) = 0 when& -+ Ouniformly with respect tou E Dandz E [O, T / v]. 
Using (2.12) and (2.14) we obtain the integral inequality 

11 u (z) II < v i e+@ I] u (4 II do + 71 (E) 

0 

from which we have [6] 

II u (7) iI < ‘/A (e) (1 +- e2’?, 11 u (7) II + 0 cp 0 < T g T/V 

where v is of the form (2.6). The validity of formula (2,ll) follows immediately 
from this. 

For simplicity it was assumed that E is a quasi-static solution of Eq. (2.4). 
However the proof remains valid for any solution 3 = z (t, E) for which the Cauchy 
matrix of the variational equation 

dh / dt = EA (t, ~)h (2.15) 

satisfies the relationship (2.16) 
11 H (t, s) 11 < Necvtt+) 

and the expansion of the index v begins from quantities of order aT7’ (see (2.6). It 
is thus possible to assert the validity of the following theorem 

Theo r e m 2. If Eq. (2.4) has the solution r = z (t, E) which satisfies 
conditions (2.15) and (2. IS), then 

lim SUP max 
E-+0 x(t)EWe, T/rm+l) &f<?“/em+l 

(E+ 11 z(t) - z (t) 11) = 0 (2.17 1 
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Let us estimate in conformity with [3] the quantity !/ y - 1, 11, where 7~ is 
the exact solution of Eq. (1.1) defined by formula (1.11) and ij is its asymptotic 

approximation of the form (2.3). 

Formulas (1.16) imply that when conditions (P,) are satisfied, the relation- 

ships lj ui (4 x, /I7 II 3ui Ct, x, 1 ?lt II & $ Ct>7 in which function q (t) is bounded 

in every finite interval and 1 im t-1,$ (t) =O when r -+ 00, are valid. 

Moreover the statement 

I/ &U1 (t, x) -+ . . . + FCUE (t, z) ;j & kezl) (t) ((1 G t < O”) 
is valid [3], i. e. 

I/ &U1 (t, 2) -t * * * -j- E”l/t (t, x) (1 & c (E) (0 < f G 7’ien’-+‘) (2.13) 

and in the same way 

/i F “-1 I 
d.4 r ..* + 2+$ // & 17 (E) (u <t f T/En-) 

(2.19) 

and lieu c (a) = 0 when E -+ 0. 
Region D is called regular [3] , if there exists a constant c such that any 

two points J, y ~1 D can be connected by a straightened curve which is shorter than 
c // x .- y I/. Thus, when conditions (Pk.) are satisfied and region D is regular, 

from (2.18 ) and (2. 19) and from the definition of a regular region, follows that 

I/ y - y /j = j/ (5 - J) -j- [eli, (t, x) + . . . + 6” u, (t, 2) - 

cCil (t, vc) - . . . - dW,i (t, x)1 II < jl 2 - _L /I (1 -i- d (a,)) 

( 
lim d (E) = 0 rrpa E -P 0, -I., .i: E D, 0 \i t .>+ $ 

‘j 
Since the bandy I/ .r - x tj satisfies condition (2.17 ), we can write 

lim sup max 
E-O !/(/)E.V(E, T,iP”~+l) l)5y/<T/E~“fl 

(+ /I y (t) - I fj (t) II) == I! 

iiW=N+ 5) 

where N (E, T) is the set of alf solutions of Eq. (1.1) deter~ned in IO, T1 which 
satisfy the initial condition y (0) = go, and NL (a, T) is the-set of all asymp- 

totic approximations of the k -I- I- st approximation of solution Y (r). 
It can be shown that the proof of the averaging method for infinite time interval 

[3] is also based on Theorems 1 and 2. For this it is sufficient to repeat the proof by 

setting Y ( 0 in (2.6 ) and (2. 16). 
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